整全求真及方法論基礎之:

思考、陳述、述相、真相、真理何謂真理 ?

「在滿是歪理,否則就想當然的國度,我們要播下求真的種子。」

作者:彭耀階   Pang, Yiu Kai    Oct, 2020.

 

思考的最主要形式: 陳述
語言雖非思考的唯一形式,卻是個壓倒性的主要形式。語言思考的最基本單元,為之一項陳述。陳逑之內分為主語和謂語。陳述乃述及主語,謂語乃拿來描述主語的語言部份。或者有人會問: 祈使句和感嘆句不都是沒有主語的嗎?其實都有,只不過都給隱藏了。祈使句隱藏了聽者,即第二身。感嘆句的主語已經在上文或下理交代了,也就不在感嘆句中出現而已。陳述所述及的,絕大多數並不是該項陳述本身,甚至並非語言或由人所界定的符號本身,而是作出陳述者的思考主體、意感、感覺經驗或情緒經驗,而且往往是經由認知投射而覺知的肉身,與及肉身以外的整個時空世界和宇宙。至此我們需要對之進行一些認知分類切割,所有一概會被一項陳述所述及的人、事、物、感、經驗、語言、文字、符號等,都分成兩大類: 語言和世界,語言只是世界內的子集,而世界則包括一切。

語言、符號和世界
語言、文字、數字、數學符號乃至交通標誌、摩斯密碼等,其實都是符號。凡符號都具有其獨特和固定的呈現形式,例如形狀、聲音……等,亦即符號本身。另就是符號的意義,它可以是其他符號的組合,也可以不是。不過,任何一個符號本身的特貌,及其所代表的意義,兩者皆非必然,都是由人所任意設定及界定,或由符號法則演譯而生,或者是經由一群人經歷過一段時間之後所共同發展出來。不過,在探討思考的領域內,以「語言」作為這一大類的統稱,則會更為適當,皆因思考都是主要以語言的形式進行,況且,所有非語言的符號都可以或需要以語言加以描述或詮釋,倒過來卻不可以。

公有經驗和私有經驗
任一思考者所使用的語言,都是習得,亦大多供與別人溝通之用。所以,語言所載有的意義都必然是可傳遞予第三者的,若具有不可傳遞的成分,都必須要特別說明。人們很容易會誤以為,其感覺和情緒經驗都是可以傳給第三者的。實則不然。例如我們看見一張藍色的畫紙,告訴旁邊的人那是藍色,旁邊的人同意,我們定會結論二人都對畫紙具有相同的顏色感覺。然後又取出另外一張紅色畫紙,又告訴旁邊同樣那人說那是紅色,他/她又同意,我們又會結論二人都對該畫紙具有相同的紅色感覺。不過,問題來了,原來有一些人,會告訴你兩張紅藍畫紙的顏色是相同的,若果二人稱為藍色的色感經驗是相同的話,根本上不可能那些少人又會稱它跟紅色畫紙的顏色相同,這時我們只好結論那少數人跟我們叫相同顏色的色感經驗並不一樣,因為他們患上色盲。沒有患上色盲的人又如何呢?從剛才一個跟色盲者一起作的簡單實驗可以結論,大家以相同名稱稱呼的顏色,各人所經驗到的色感可以並不一樣,而且他人的色感到底是怎個模樣,根本不可能得知。又假定某人的七色序列跟大家所有是顛倒過來的,大家叫紅色的顏色,在他眼裡的色感其實是紫色,但人人都叫它紅色,所以他也叫在他而言是紫色感的顏色作紅色。人人和他都叫黄的顏色,他經驗到的色感其實是藍,如此類推,原來假若真有這樣一個人,我們根本不可能以任何想像得到的實驗、測試等將之鑑別出來。而色盲者之所以鑑別得到,純因為一般人看來色感不同的兩種顏色,他們看成是同一顏色,亦即色感相同,這才露出了馬腳。其實一般非色盲者跟色盲者的分別,無非人人視作不同的顏色,他們也視作不同,色盲者則視作相同,僅此而已。至於大家以相同名稱稱呼的顏色,色感上是否人人相同,根本無法得知。

對真相的探求,一旦牽涉到人的主觀經驗,若不考慮到它們跟語言之別,便出差錯也不會知悉。顏色的稱謂跟其在個別人眼中的色感就是一例。從認知分類中將之加以切割實有必要。可以透過語言、符號或其他媒介傳達給第三者的,統稱為「公有經驗」,而個人心靈世界內的各種經驗感受,若不可能原汁原味傳給第三者知悉的,都統稱為「私有經驗」。顏色是公有經驗,各人對各種顏色所經驗到的色感,乃私有經驗。若有一項陳述: 「某張畫紙的底色是黃色」,那就是一項公有經濟陳述。若陳述為真,任何一人看了,都必定同意是黃色。若又另有一項陳述: 「這張人人認為是黃色的畫紙,呈現在我眼前的色感郤是綠色。」這就是一項私有經驗陳述,就連他所說的綠色色感到底是怎樣,大家也無從知曉,說不定人人稱作綠色的顏色,呈現在他眼的色感原來是大家所稱的籃色,不過因為人人都稱之為綠色,他於是也稱之為綠色。總之,私有經驗無法讓第三者確切知悉,除非有人跟你的心靈可以相通。


陳述、述相、真相,陳述的真值:
人的心靈之內,為各種感覺、意感、情緒等諸般私有經驗所包圍著,所以人的心靈乃處身於私有經驗世界之內。人亦對各種私有經驗作出認知投射,然後經驗到公有經驗; 同時從公有經驗之中,經驗到「公有經驗世界」的存在,亦即其所處身的時間空間世界,及其內的萬事萬物。語言所描述的,可以是語言本身,及或公私經驗世界。一項陳述既然主要述及世界,我們自然要問,這陳述是否真確,其述及的事、理、人、物及或公私經驗,是否真的存在?乃至於為何要有此一問?

性情男女認為不用問,「我想得出來的,世界就當如此。」只不過,他們經常為此踫釘,然後又馬上忘記。須知一項陳述純由語言組成,之所以描畫得出世界,純因為其含義可以讓人在腦海之中據之模擬出事、理、人、物及或經驗出來,模擬就不是真實的存在,而一項陳述則必然縕涵著,其含義在模擬之外的存在。於是,有陳述,就必然有真相的問題。有陳述,就必定有其內涵,應該稱之為「逑相」,述相之中又分為事相、理相、人相、物相、公有經驗相和私有經驗相,這諸相都只存在於根據陳述含義而得的模擬之中,而與該項陳述相對應的真實存在,是為一項陳逑的「真相」。一項陳述必然有述相,若述相跟真相相符,那就是一項真實的陳述,否則該項陳述是為非真,除非那是一項無意義的陳述,例如「甲不是甲」。

不宜以二值判斷的陳述
也有不少陳述並不適宜套入真或非真的考量。就像升學問題,升讀野雞大學,多讀一年高中,還是投身職場,何者最佳?即便人生目標、個人性向和未來社會狀況都已預設妥當,你也只可以三者摘一去過你的一生,其餘兩種可能選擇已無真相可言,而只有述相。皆因你起碼也得看未來一二十年的人生,才可以權衡優劣。有不少人先進了職場再回頭念野雞大學或考入名牌大學,但那已經是另一回事,跟十七八歲入大學的發展必定截然不同; 你更不可能同時過三種不同方式的人生,那就不在話下。諸如此類的陳述,由於在原理上也不可能具有完整真相供鑑證述相,只能夠就其推理、論述等給予是否最佳意見的判斷,除非陳述本身另有問題,例如「升讀野雞大學絕對/無可懷疑/百分百是最佳/壞選擇」,那就必然是個非真的陳述。

較佳或最佳論述
類似的思考,我們只可以滿足於得到最佳的論述,而最佳的論述如何獲得,整全求真方法正好是一套最佳工具。整全求真的獨特之處,其一正正在於他可以有客觀方法探討價值。自從羅素投入了論述價值之後,他的一句「你沒法子以科學方證明損人利己是錯的」,嚇跑了幾乎所有哲理發燒友,令到價值探討成為一片荒蕪之地。羅素的陳述並沒有錯,只是並不整全,因為並非所有陳述都可以套入真值與否的探討,正面價值是人類認為值得追求、做或享有的事物,當中有些純屬主觀願望、喜好,而類此主觀願望、喜好的陳述,當中已經縕函了其述相並無觸及公有經驗的世界,唯一相對應的真相就是陳述者內心是否真的存在此一主觀願望或喜好的私有經驗。但先前說了,私有經驗陳述是個沒有可能直接確知其本質和真值與否,我們只可以憑藉某些私有經驗現象間接推知些許有關私有經驗,即如先前探討過的,同一種顏色落到不同人眼中,無色盲者之間沒法確知彼此對同一顏色的色感經驗是否相同,色盲者和正常視力者之問更之可以推證為並不相同。



真相和真理
人們偶然會聽到,某某人、某某經典所言,句句真理。歸納一下古今類似言詞的含義,那就是指一整套由非常多項陳述組成的論述或主張,其真值是真的,並不是非真的。但大家必須弄清楚一個要點,真理並非一個、一組或一套真相,而是一項、一組或一套真值為真的或被認為直值為真的陳述。注意!是陳述,而且是具有兩不同可能涵義的陳述: 真值為直的一套陳述,或者被認為真值為真的一套陳述。人們偶然又會聽到: 「這個世界到底有沒有真理?」若果真理被定義為「被認為真值為真的一項、一組或一套陳述」的話,世界當然有真理,不少人都聽過「聖經是由神所默示而寫成」,在上述定義底下,聖經就是真理。不過,這個結論同時又令到講究求真的人不能同意,很顯然他們對真理一詞的理解並不如是。這個定義亦容易產生混淆,當說的一方只想表達某套說法、主張、理論被認為絕對正確,聽的一方可以誤以為該套言論、主張本身乃絕對正確。但若真理被定義為「一項、一組或一套真值必然為真的陳述」的話,則一般人絕少會將之理解為僅僅「被認為絕對正確」。

真理和存在
既然如此,那麼,真理是否存在?根據剛才的定義,其實即是問世上是否具有絕對正確、不可能非真的陳述存在,而且這不可能非真並不僅僅在於陳述本身如是,它更加是可以被證實、或被確立的。四百年前一位思想家回答了,笛卡兒說: 「我思故我在。」先假定「我」並不存在吧!但我若不存在,亦不可能問我是否真的存在這一問題了,只要我有此一問,「我並不存在」此一回答陳述也就不可能為真,而「我並不存在」跟「我存在」屬必然互斥關係,所以「我存在」乃不可能否定的結論。這是人類破天荒以絕對正確,不可能出錯的方式,所尋求到的首項真理!當然,笛卡兒當年的論述仍未臻完善,要達至完美的立論,像思考、陳述、述相、真相、真理等概念應要首先建立、介定清楚,而「存在」的大眾日常概念並不含糊,可以不加定義,但定義清楚則更加完美。利用剛提到的概念,述相的存在即是與述相相符合,及令到陳述為真的真相狀況。例如「某某在台灣」,述相就是我們可以在腦海之中想像某某處身於台灣某處,真相就是真實世界內的台灣,境內有還是沒有某某的存在,有的話我們說與述相對應的真相存在,某某在台灣的陳述為真,沒有的話我們說與述相對應的真相並不存在,陳述為非真。

「我」所指為何?
「我」又如何呢?其實此乃關鍵詞,若然我乃包括佔據空間的肉身,在思考發問的我仍未能令到肉身我的存在成為絕對正確,不可能非真。本體唯心論者認為物質、空間只是各種感覺經驗的假合,即如看立體電影時可以看到立體空間一樣,另又如做夢時以為自己處身於夢中的世界,等等。這不是說肉身我並不存在,只是說有不少證據顯示出,它的存在仍具有可以懷疑的地方,仍然夠不上是「絕對正確,不可能非真。」「我思故我在」要能夠成為真理,就必須要把肉身我甩掉,若果「我」只是指思考主體,那就絕絕對對,沒有可供懷疑的空間了。



公共我的存在,公有經驗、私有經驗


「肉身我的存在」尚且不可能絕對正確,更何況笛卡兒的存在呢?若果笛卡兒的存在不可能絕對正確,何解笛卡兒說他曾經存在過卻可以呢?原來這句話不是指笛卡兒或某人,而是任何按照這句話思考的人。部分關乎個人自己、尤其是心靈方面的陳述,若果任何人拿來按之思考、探討,而過程和結果都不會有任何差異的話,這項或這套陳述所述及的我就是「公共我」,而其所述及的感受、經驗等都是公有經驗,而非私有經驗。「那隻雪糕的味道像榴槤」就是公有經驗的陳述,因為那只是比較性的陳述,不用訴之於別人對榴槤味道的個人經驗到底如何。「榴槤味道像嬰兒糞便」則屬私有經驗陳述,任何人都無從得知第三者的榴槤味道感覺到底如何。有人嘗到榴槤味道醉人,便想人人都吃榴槤,那知不少人吃起來卻覺得像吃屎。有人愛與天鬥,與地鬥,覺得其樂無窮,於是迫人倣效,那知當人人都天天互鬥時,卻比死更難受。

相信一般人都經驗不到別人的心靈,再加以今日人工智能擬真機械人的面世,處身於一個混雜著沒法分辨到底是真人還是機械人的地方,完全是指日可待的未來。每當有這種機械人接受電視訪問的新聞,總會有人好奇,想知道機械人是否都像人一樣,具有視聽嗅嘗、苦樂愛憎等主觀經驗,亦即先前界定了的私有經驗。原來機械人的構造,單看視覺,就只有眼部和視神經跟人體構造的原理相同或近似,然之後機械人的視訊都交由電腦程式處理,根本不會像人般,將視訊在腦子內詮釋成佔據平面和空間的光暗顏色和影像。他們可以被程式成活得跟人一模一樣,就是缺了內心的心靈世界。即便是神經科學家,亦無從得知那些神經視訊進了腦子之後,如何可以化成我們的視覺私有經驗,所以即使機械人研發者有此意欲,現有的知識根本不可能做出一個具有人一樣心靈世界的機械人出來。這種人工智能擬真機械人的出現,定然令人日有所思,夜有所夢,唯心及唯物論者也可能在夢中世界跟他人交往、衝突、再問問他們是否跟自己一樣擁有一個私有經驗世界,於是否定了這個陳述: 「他人跟我一樣地生活、行動、工作、學習、思考,聲稱擁有一個跟我自己相同的內心世界,所以他人的心靈或私有經驗必定存在。」請注意,並非否定了他人同樣擁有一個由私有經驗組成的心靈,只是否定了上項陳述乃「絕對真確,不可能非真!」也即是,上項陳述並非真理。

真理的探求
我們所說真理,不是永恆的,可以救民於水火的大道理,或者至高無上的存在嗎?但綜覽一下古今中外的言詞,「真理」又確有不少類似的使用場合,例如「某某所言句句真理」之類,人們不會因為某某說了不少無關宏旨的話而認為上項陳述不妥當。此外,若果一項陳述乃絕對真確,不可能非真,它自必然經得起時間的考驗,至於是否永恆,若再加上這一項條件,則會令到極多不可能非真的陳述,難以確立其真理身份。所以,「他人的心靈世界是否存在」同樣可以探究其是否真理,而答案是否定的,不過,它雖然不是一項真理,我們也沒有任何好理由認為他人的心靈世界並不存在,我們僅是沒法子確定「他人也有心靈世界的存在」是不可能非真而已。

即是,舉凡「絕對正確,不可能非真的陳述」,就是一項真理,若然是永恆不變的,我們稱之為「永恆的真理」。這個定義並不牴觸語理的普遍使用規則,上面解釋了。一詞的詞義並不是非遵守普遍使用規則不可,而是普遍使用的含義有問題時才可以不遵守,並且要加以解釋,何以不遵守,和在使用前重新定義,使用之時要前後一致,否則就是詭辯。不遵守詞語的普遍使用規則,或者前後含義不一致,或者利用大眾對某一詞語的意義含混不清,正好是常見的詭辯技倆之一。



演繹真理


釐清「真理」的含義,及適用範圍之後,我們便可以出發,看看世上有些什麼真理存在,當然少不得還要帶同一大堆核心基礎概念: 認知、思考、陳述、述相、真相、真值、語言、符號、世界、私有經驗、公有經驗……等等。首先,若果任何不可能非真的陳述都是真理,那麼,「A=A」豈不都是真理?原來它不光是被邏輯學者所稱,一項無意義的「重言句」,它還是個最淺白的全等陳述,即若有兩項陳述或符號是全等的話,它們是同一述相或符號意義的兩不同陳述或符號呈現方式,就等同A=A。從前總有數不清那麽多人在迷惑何以1+1必定等如2,而不等如1或者3,終於要勞煩十九、二十世紀的算經哲學大師羅素給大家提點: 2無非乃1+1的另一全等符號,即如2^3無非2x2x2的另一便捷了的符號表達方式而已。符號意義亦無非乃任意設定,其他人亦照樣使用,如此而已。但是,何解又有1+1=1呢?原來那是另一套數學,稱為布連代數,「+」的意義跟普通數學的加截然不同,不是數量的簡單累積,而是前或後者符號的任一乃至兩皆出現,根據這個符號定義,1+1+……+1仍是等如1。數學陳述所述及的,都是符號和符號的運作、意義、規則、都是由人所界定,都是2+2+2=2x3一類全等陳述,所以都是不可能非真。此外還有符號的推演,而所謂推演,卻無非乃符號的組合排列而成的必然呈現,例如一項條件推理:「已知若A為真則B為真,而且A為真,於是可以結論B為真。」其實結論乃出自排列「若A則B」、「A」和「B」等三項陳述的所有真與非真關係表列而得,於是只要大小兩前題為真,結論也就「不可能非真」。邏輯學者發展了多項由已知前題推出結論的推理規則,統稱為形式演繹邏輯,上述的條件推理,或條件三段論法乃當中一項推理規則。推理過程跟規則相符者,就為之有效推理。例如「試前不温書,必無好成績,而某甲試前非常努力温書,可以結論某甲必得佳績。」則是一項無效推理。原來形式演繹邏輯中並沒有「若A則B,而且A為非真,所以B也非真。」這套推理方式,A、B乃陳述的代表符號。除非這樣: 「試前不温書,必無好成績,而某甲考試得佳績,於是可以結論某甲試前非常努力温書。」這才是個有效推理。蓋因形式演繹邏輯中有「若A則B,而且B為非真,結論是A也非真。」這套推理方式。當然,除掉照套用邏輯推演規則之外,也可以單憑分析條件因果關係而取得上述不可能出錯的結論。原來「若A則B」的關鍵在於即使這個陳述為真,導致B出現的條件可以不是A,而是C、D、……,除非大前題的條件陳述是「單單如果A則B」,此即表明A是唯一條件,否則並不能夠單單從A為非真而結論B也是非真,因為C、D、……等也可以導致B的出現。但B為非真則可以結論A也是非真,因為大前題說明了單單A的出現必定導致B的出現,若B不出現,只有一個可能,就是A並不出現。懷疑論者也每愛拿一些實例來反駁: 不是有人不温書也考取到佳績嗎?原來這項事實所否定了的,是大前題: 「試前不温書,必無好成績。」既然大前題經已出錯在先,已經不符合推理的條件要求,也就無由認為跟事實不符是因為推理法則並非必然有效,蓋因所有推理的先決條件,就是所有前題都必須為真。會不會此說是硬將一概問題都推到大中小前題身上?大家必須明白,所謂結論,其實並無新發現,都是經已縕函了在大中小各前題之內,結論只是將其縕函之人情事物論等明示出來而已,故而出錯定必出在前題,僅此而已。至此懷疑論者又要反駁: 既然一概都已縕函在前題內,那還要推理來幹啥?小心點看清楚大中小各前題不就成了!對呀!實情又確是如此,不少人從「試前不温書,必無好成績。」就可以知道什麼小前題出什麼結論,他們甚至都不曾上過什麼邏輯課。總之邏輯能力是人的潛在天賦,兒童自五至六歲開始自自然然地得到發展,所以有些人自自動動便得到答案。那麼形式演繹邏輯的好處在那裡?在於它提供了一個快捷而又確切的推理機制,同時在容易推理出錯之處,例如剛列舉了的「若A則B,而且非A,於是結論非B。」等諸如此類容易犯上的推理謬誤上,令人知所警惕,從而免卻推理犯錯; 又當推理需要層層遞進,成為一條論證練,甚至多條論證練交織成網絡時,也不會陷於抖纏不清的局面。

推理也不單是邏輯形式,也有按前題的事理而定。例如「某甲是個獨居健忘人,他必須要在家中煑食,結論是: 為保家居安全,他應該使用計時開關及計時提醒鬧鐘。」,那就不光光是邏輯推理,尚且要視各前題的事理而得的結論,所以稱為事理推演。運用邏輯推演,只要各前題皆為真,推演過程有效,結論便不可能非真。但事理推演則不一定,即便所有前題皆為真,結論也並非不可能非真,而且真值的結論也可能會多於一個,例如某甲又可以只使用煑妥後會自動關閉的煑食器具。

數學系統,以至其他演繹系統如邏輯、集合、幾何等,都是以一小套人為符號及其意義的設定為最終極依據,而符號及其意義的設定陳述都是任意而自足,無須訴諸任何其他陳述,所以都是不可能非真。現代平面幾何得羅素點化後,其實都視點、線、面、角和角度、、等為任意設定,「靈感得自空間世界,而非空間世界的描述。」所以這類陳述本身並無非真的可能。然後再從這一小套自足設定以合符全等陳述替代,合符形式演繹邏輯等所推演出來的諸多定理,自必然都是「絕對正確,不可能非真。」

挑戰演繹真理
探求真理之旅,首先求到的,原來是數學、邏輯等演繹科學,而非救民於水火的大道理。不過,宇宙無窮,將這些學問放到茫茫太虚,是否仍能正確無誤?幾何定理中有「任何大小三角形的內角和必定等如18O度」,不過,當我們將任意三顆相距以若干光年計的星星以直線連接起來,所形成的三角形,內角和卻少於18O度; 三顆星相距愈遠,內角和比18O度少得愈多。原來根據廣義相對論,空間會向有物質聚集之處折曲,物質的重力場愈強,折曲得愈利害。折曲的方式非人這三維度腦子所能夠理解,然而此物理現象確是在愛恩斯坦發表了其廣義相對論之後不久,在南非給證實了。太陽附近一左一右的兩顆星星,日全蝕時便可以看見,科學家這時量度兩顆星跟地球所挾的角度的話,發覺比太陽並不位於該兩顆星之間時所量得的角度為大,星光穿過太陽附近空間時,會微微被改變前進方向,彎向太陽。因為太陽附近的空間向太陽重力場折曲了,於是證實了空間向重力場折曲此一自然現象。對天文陌生的人會問,太陽有機會不處於太陽附近的兩顆星之間嗎?原來恆星在視覺天球上的位置,可視為固定不變,太陽則沿黃道每天在天球上移動一度左右,亦即以每天一度左右的速率移離該兩顆星,令到它們半年後到晚上才出現。

這平面幾何終究經受不起無邊宇宙的考驗,還算是真理嗎?答案是: 它的真理地位,依舊絲毫無損。平面幾何旨不在探討宇宙空間,是個自足的演繹系統,人類拿來應用,須先了解應用場合是否服膺這套空間演繹系統。廣大宇宙空間的三角形內角和少於18O度,錯不在平面幾何學,而在於宇宙空間屬於負空間曲率的「非歐氏」幾何,即並不服膺古希臘時代歐幾理德所發展出來者。三維度空間若向人類不能感知的維度彎曲,則呈現負曲率,三角形內角和少於18O度。同樣道理,换過人類能夠感知的維度打個比方,就是二維度平面向第三維度彎曲,平面變成球面,例如地球,呈現正曲率,地球表面上長距離的三個點若以最短距離綫段連起來,所形成的三角形,其內角和則都是大於18O度,而非18O度。德國數學家黎曼亦早於廣義相對論面世前的十九世紀發表了絕對幾何學,那是以笛卡兒創設的坐標幾何為基礎,及以牛頓/來布尼茲開創的微積分為首要演算工具所發展出來的微分解析幾何,這套幾何系統才是探討廣大宇宙空閒的學問,歐氏平面幾何成為這套絕對幾何之內,空間曲率為零的一個子系統。



如何否證演繹科學,從歸納角度看演繹真理


其他演繹科學亦都如是,經常拿來探討世間諸事的,若出現問題,往往都不由於系統本身有問題,況且系統問題亦不可能自所套用的世界之中發現,蓋因演繹系統並不涉及系統以外的世界,無非因為基本設定的構思,其靈感或取材往往來自世間萬象,每易於令人產生錯覺,誤以為演繹科學也都是描述世界的理論。演繹系統都不可能非真這一點,歸納上的證據也頗為充分。查古希臘時代所發展出來的各類知識,絕大部分都老早被放棄或大幅修正,托勒密的天動學說,地球大小,……數之不盡,唯獨是幾何、代數可以沿用至今,邏輯學則只是被納入更為完善的演繹系統之內,此外並無任何推理機制被否定。演繹系統若有問題,除非是基礎任意設定不一致,或則有一些更為基礎的前設被隱藏,再就是系統結構或推演出問題,但這些問題都必然會被探研者發現,成為演繹系統不可能非真的另一主要因由。

探求演繹系統以外的真理


好了,同意成功的演繹科學都是真理,只是真理的探求者並不覺得至此便找到他們想要尋求的。這類真理,不如稱為工具真理,或者演繹真理,當會更加貼切。那麼,除此而外,尚有沒有其他非演繹科學的真理存在? 

 

本章撮要:


1)語言思考的最基本單元稱為一項陳逑,一項陳述乃一完整語句,分為主語和謂語兩部分,陳述所述及的事、理、人、物、情、經驗、現象等為之主語,謂語乃形容及或描述主語的部分。
2) 一組或一套陳述可以由任意多個陳述組成。
3) 意見、主張、理論等都是不同的一項、一組或一套陳述。
4) 陳述所述及的事、理、人、物、情、經驗、現象等為之述相。
5) 與述相相關的符號、語言及或世界為之真相。
6) 一項、一組或一套陳述,若其述相與真相相符,該陳述是為之真的陳述,否則便為之非真的陳述。
7) 絕大多數有意義的陳述,都有真值的問題,亦即需要知道該陳述為真還是非真。
8) 若不是真就是非真的陳述,為之二值陳述。
9) 具有明顯模糊地帶,不能判斷陳述乃真還是非真,是為非二值陳述。
1O) 另一些非二值陳述,根本不適宜以直或非真作判斷,而只能作優劣判斷。
11) 能夠由任意第三者重覆或確認的經驗,是為公有經驗,否則都是私有經驗。

12) 按照歷來的使用場合,再惕除含糊或不一致之處後,真理應該給定義為一項或一套絕對正確,不可能非真的陳述。
13) 肉身我的存在還不能算是一項真理,思維我的存在則是。
14) 「我思故我在」作為一項真理,「我」並不是指近現代哲學之父笛卡兒,而是指任何講述這句話的「公共我」。
15) 「他我」即他人跟我一樣地生活、行動、工作、學習、思考,聲稱擁有一個跟我自己相同的內心世界,而且尤其是指他人的心靈或私有經驗世界也同自我一般存在。
16) 他我的存在並不是一項真理,但留意這並不就是他我並不存在。
17) 演繹科學都是由任意設定開始,演繹法則自訂,推演過程純綷按照自訂法則和邏輯必然性推行,跟真實的內外世界,及邏輯和語理以外的既有演繹系統並無必然關係。
18) 成功建立的演繹系統都是真理
19) A=A不全是無意義的重言句,它亦可以是數學上全等陳述的一個最簡的展示形式。
20) 在數學生,同一全等陳述可以有多個不同的符號表達形式,數學系統的發展,與及難題的破解,當中一個主要方法就是換上另一個全等陳述。
21) 1+1=2 無非展示2是1+1的另一簡化了的全等陳述。
22) 另又有1+1=1,這並不表示數學系統有問題,只因為1+1=2跟1+1=1分屬兩個不同的數學系統,普通數學和布連代數,兩系統中的1和 + 在意義的界定上並不相同。
23)演繹邏輯典型實例: 三段論法。若已知大小二前題的陳述皆為真,可推出未知的結論也必然真,於是可以從已知推出未知。
24)三段論法當中一典型法則乃條件三段論法。設A和B乃兩不同陳述句的代表符號,
正推:
大前題: 若A則B
小前題: A
結 論: B
倒推:
大前題: 若A則B
小前題: 非B
結 論: 非A

25)人自5至6歲開始自然會發展邏輯能力,但發展起來後的能力因人而異,形式演繹邏輯除了可以讓能力弱的人補回缺失之外,亦可以令能力不差者的推理更加順利確當,而最重要之處還是,它可以確切顯示出容易犯錯的地方,而那些地方都是即使邏輯能力佳,但未學習好邏輯學之人都會常犯錯誤之處。
並非所有人都會在成長過程中發展出歸納邏輯能力,演繹邏輯才是。

常犯的錯誤條件三段論法推理形式:
大前題: 若A則B
小前題: 非A
結 論: 非B

26)演繹系統的基礎設定並非必須來自世界,它僅是經常取材於此。

27)演繹系統並不可以其外的世界與之不符而否定甚或僅僅質疑其真值。此等系統成立與否,全在於其基本設定、符號以至整個系統的意義和法則是否配合、一致而且合乎邏輯而定。最典型例子乃歐氏平面幾何,當中一個三角形定理是內角和必定等如18O度,原來廣大宇宙空間的長度以光年計的三角形內角和乃小於18O度,但這現象只顯示宇宙空間並不服膺歐氏幾何,而非這一條定理出錯。數學者亦另行發展了一套非歐氏的微分解釋幾何,根據這套幾何學,若空間曲率等如O,即是還為歐氏幾何,而宇宙空間呈負曲率,則三角形愈大,其內角和比18O度便愈少得多。

上頁    LAST PAGE